NOT RECOMMENDED FOR NEW DESIGN

Features

- Epitaxial Planar Die Construction
- Ideal for Medium Power Amplification and Switching
- Complimentary PNP Type Available (DPLS320A)
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic, "Green" Molding

Compound. UL Flammability Classification Rating 94V-0

- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Finish - Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.008 grams (approximate)

Maximum Ratings $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	- 20	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	20	V
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	5	V
Peak Pulse Current	ICM	5	A
Repetitive Peak Pulse Current (Note 3)	ICRP	3	A
Continuous Collector Current	$\mathrm{Ic}^{\text {c }}$	2	A
Base Current	I_{B}	0.5	A

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 4) $@ T_{A}=25^{\circ} \mathrm{C}$	P_{D}	600	mW
Thermal Resistance, Junction to Ambient Air (Note 3) @ $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\theta J \mathrm{~A}}$	209	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes: 1. No purposefully added lead.
2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
3. Operated under pulse conditions: Pulse width $\leq 100 \mathrm{~ms}$, duty cycle ≤ 0.25.
4. Device mounted on FR-4 PCB; pad layout as shown on page 4 or in Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

NOT RECOMMENDED FOR NEW DESIGN USE FMMT618

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Min	Typ	Max	Unit	Test Conditions
OFF CHARACTERISTICS (Note 5)						
Collector-Base Cutoff Current	$\mathrm{I}_{\text {cbo }}$	-	-	100	nA	$\mathrm{V}_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$
		-	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
Emitter-Base Cutoff Current	$\mathrm{I}_{\text {EBO }}$	-	-	100	nA	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$
Collector-Base Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CBO}$	20	-	-	V	$\mathrm{IC}=100 \mu \mathrm{~A}$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	20	-	-	V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }} \text { (}}$	5	-	-	V	$\mathrm{IE}_{\mathrm{E}}=100 \mu \mathrm{~A}$
ON CHARACTERISTICS (Note 5)						
DC Current Gain	$h_{\text {FE }}$	220	-	-		$\mathrm{V}_{\text {CE }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}$
		220	-	-		$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$
		220	-	-		$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{IC}^{2}=1 \mathrm{~A}$
		200	-	-		$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$
		150	-	-		$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	-	-	70		$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$
		-	-	120		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$
		-	-	230		$\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}$
		-		210		$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}$
		-		310		$\mathrm{IC}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=300 \mathrm{~mA}$
Equivalent On-Resistance	$\mathrm{R}_{\text {CE(SAT) }}$	-	85	105	$\mathrm{m} \Omega$	$\mathrm{I}_{\mathrm{E}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}$
Base-Emitter Saturation Voltage	$V_{\text {be(SAT) }}$	-	-	1.1	V	$\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}$
			-	1.2	V	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=300 \mathrm{~mA}$
Base-Emitter Turn-on Voltage	$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$		-	1.2	V	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~A}$
SMALL SIGNAL CHARACTERISTICS						
Transition Frequency	f_{T}	100	220		MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output Capacitance	$\mathrm{Cob}^{\text {b }}$	-	-	35	pF	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

Notes: 5. Measured under pulsed conditions. Pulse width $=300 \mu \mathrm{~s}$. Duty cycle $\leq 2 \%$.

Fig. 1 Max Power Dissipation vs. Ambient Temperature

Fig. 2 Typical Collector Current vs. Collector-Emitter Voltage

NOT RECOMMENDED FOR NEW DESIGN USE FMMT618

Fig. 3 Typical DC Current Gain vs. Collector Current

Fig. 5 Typical Base-Emitter Turn-On Voltage

Fig. 7 Safe Operation Area

Fig. 4 Typical Collector-Emitter Saturation Voltage

Fig. 6 Typical Base-Emitter Saturation Voltage vs. Collector Current

NOT RECOMMENDED FOR NEW DESIGN USE FMMT618

Ordering Information (Note 6)

Device	Packaging	Shipping
DNLS320A-7	SOT-23	$3000 /$ Tape \& Reel

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Package Outline Dimensions

Suggested Pad Layout

Dimensions	Value (in mm)
\mathbf{Z}	2.9
\mathbf{X}	0.8
\mathbf{Y}	0.9
\mathbf{C}	2.0
\mathbf{E}	1.35

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.
LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

