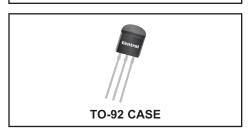
2N6027 2N6028

SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS



www.centralsemi.com

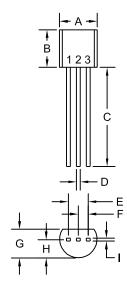
DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N6027 and 2N6028 devices are silicon programmable unijunction transistors, manufactured in an epoxy molded package, designed for adjustable (programmable) characteristics such as Valley Current (I_V), Peak Current (I_P), and Intrinsic Standoff Ratio (η).

MARKING: FULL PART NUMBER

MAXIMUM RATINGS: (T _A =25°C)	SYMBOL		UNITS
Gate-Cathode Forward Voltage	V_{GKF}	40	V
Gate-Cathode Reverse Voltage	V_{GKR}	5.0	V
Gate-Anode Reverse Voltage	V_{GAR}	40	V
Anode-Cathode Voltage	V_{AK}	40	V
Peak Non-Repetitive Forward Current (t=10µs)	ITSM	5.0	Α
Peak Repetitive Forward Current (t=20µs, D.C.=1.0%)	ITRM	2.0	Α
Peak Repetitive Forward Current (t=100µs, D.C.=1.0%)	ITRM	1.0	Α
DC Forward Anode Current	Ι _Τ	150	mA
DC Gate Current	IG	50	mA
Power Dissipation	P_{D}	300	mW
Operating Junction Temperature	T_J	-50 to +100	°C
Storage Temperature	T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS: (T_A=25°C unless otherwise noted)


LELOTRIOAL OTIAINOTERIOTIOS. (TA 20 0 difference following following)						
	2N6027		2N6	<u> 6028</u>		
TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
V _S =40V	-	10	-	10	nA	
V _S =40V	-	50	-	50	nA	
V_S =10V, R_G =1.0M Ω	-	2.0	-	0.15	μΑ	
V_S =10V, R_G =10k Ω	-	5.0	-	1.0	μΑ	
V_S =10V, R_G =1.0M Ω	-	50	-	25	μΑ	
V_S =10V, R_G =10k Ω	70	-	25	-	μΑ	
V_S =10V, R_G =200 Ω	1.5	-	1.0	-	mA	
V_S =10V, R_G =1.0M Ω	0.2	1.6	0.2	0.6	V	
V_S =10V, R_G =10k Ω	0.2	0.6	0.2	0.6	V	
I _F =50mA	-	1.5	-	1.5	V	
V _B =20V, C _C =0.2μF	6.0	-	6.0	-	V	
$V_B = 20V, C_C = 0.2 \mu F$	-	80	-	80	ns	
	TEST CONDITIONS $V_S=40V$ $V_S=40V$ $V_S=10V, R_G=1.0M\Omega$ $V_S=10V, R_G=10k\Omega$ $V_S=10V, R_G=10k\Omega$ $V_S=10V, R_G=10k\Omega$ $V_S=10V, R_G=200\Omega$ $V_S=10V, R_G=1.0M\Omega$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

2N6027 2N6028

SILICON PROGRAMMABLE **UNIJUNCTION TRANSISTORS**

TO-92 CASE - MECHANICAL OUTLINE

DIMENSIONS						
	INCHES		MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MAX		
A (DIA)	0.175	0.205	4.45	5.21		
В	0.170	0.210	4.32	5.33		
С	0.500	-	12.70	-		
D	0.016	0.022	0.41	0.56		
Е	0.100		2.54			
F	0.050		1.27			
G	0.125	0.165	3.18	4.19		
Н	0.080	0.105	2.03	2.67		
	0.015		0.38			

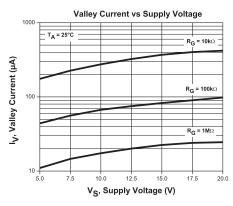
TO-92 (REV: R1)

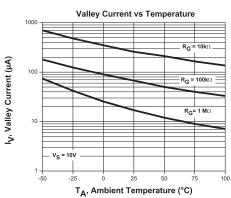
LEAD CODE:

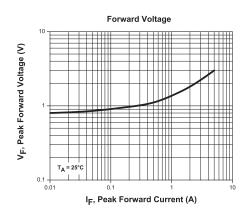
- 1) Anode 2) Gate 3) Cathode

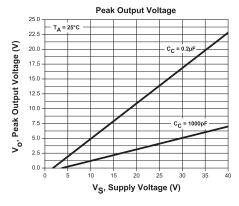
MARKING:

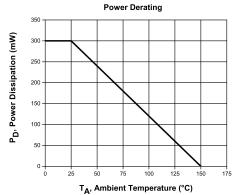
R1


FULL PART NUMBER


2N6027 2N6028


SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS




TYPICAL ELECTRICAL CHARACTERISTICS

R2 (4-February 2014)

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)